[3 + 2]-Annulation using Allylidene(triphenyl)phosphoranes: a One-Step Synthesis of Cyclopentadienes

Minoru Hatanaka, ${ }^{\text {a, * }}$ Yuichiro Himeda ${ }^{\boldsymbol{b}}$ and Ikuo Ueda ${ }^{\text {a }}$
${ }^{a}$ The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan
${ }^{b}$ Department of Molecular Engineering, National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305, Japan

Abstract

A convenient method for the synthesis of substituted cyclopentadienes has been developed using allylidene(triphenyl) phosphoranes. (3-Ethoxycarbonyl-2-substituted-2-propenylidene)triphenylphosphoranes 1 reacted with α-halogenoketones under very mild reaction conditions to undergo a [3+ 2]-annulation leading to the regioselective formation of tri- or tetra-substituted cyclopentadienes in good to excellent yields. Allylidenephosphoranes 1 also reacted with S-ethyl bromoethanethioate to yield 4-ethylthiocyclopentadienes, which was readily converted into a cyclopentenone.

Five-membered carbocyclic ring formation has been much studied recently, ${ }^{1}$ particularly with respect to intramolecular Wittig reactions. Several phosphoranes including (1-ethoxycarbonylcyclopropyl)triphenylphosphonium salts, ${ }^{2}$ (phenyliminovinylidene)triphenylphosphorane ${ }^{3}$ and (bromoacetylmethylene)triphenylphosphorane ${ }^{4}$ have been developed for this purpose, the compounds acting as bifunctional reagents in the annulations. Allylidenephosphoranes may also function in this way, reacting with various electrophiles at the positions α or γ to the phosphorus atom. ${ }^{5}$ However, the synthetic utility of

Fig. 1
phosphoranes in annulations has been little explored, except for cyclohexadiene formation with α, β-unsaturated aldehydes. ${ }^{6}$ We have previously reported cyclopentene formation from glyoxals and cephalosporin 3^{\prime}-triphenylphosphonium ylide, which is a highly resonance-stabilized allylidene(triphenyl)phosphorane. ${ }^{7}$ The reaction takes place by way of an initial aldol condensation at the 2-position of the cephalosporin followed by an intramolecular Wittig reaction to give the tricyclic cephalosporin bearing the five-membered ring between $\mathrm{C}-2$ and $\mathrm{C}-4$. This finding suggests the possibility of five-membered ring formation by allowing allylidenephosphorane to react with ketones having an appropriate leaving group at the α-position.
In a previous communication we described that the stabilized allylidenephosphorane 1 reacted with α-halogenocarbonyl compounds to give substituted cyclopentadienes. ${ }^{8}$ This paper describes the detail and the scope of this $[3+2]$-annulation.

Results and Discussion

We chose (2 -substituted 3-ethoxycarbonylprop-2-enylidene)triphenylphosphoranes $\mathbf{1 a - c}$ as stabilized allylidenephosphoranes. The precursors, the phosphonium salts $2 \mathbf{2 a}$ and 2 c , were prepared in the form of a ca. 1:1 mixture of the E - and Z-isomers according to the literature method, ${ }^{9}$ and $\mathbf{2 b}$ was prepared in the Z form from ethyl (Z)-4-bromo-3-phenylbut-2-enoate.
Because of the paucity of literature precedents, ${ }^{10}$ the alkylation of allylidenephosphorane with alkyl halides gives an uncertain pattern of regioselectivity. In order to examine this feature of the reactions, 2a was treated with $\mathrm{Bu}^{t} \mathrm{OK}$ in THF to generate the phosphorane 1a, which was subsequently treated with iodomethane to give the γ-methylated phosphonium

1
$\mathrm{R}^{1}=\mathrm{Me}$
b $\mathrm{R}^{1}=\mathrm{Ph}$
c $\mathbf{R}^{1}=\mathrm{H}$

2
a $R^{1}=\mathrm{Me}$
b $\mathrm{R}^{1}=\mathrm{Ph}$
c $\mathrm{R}^{1}=\mathrm{H}$

Fig. 2

Scheme 1 Reagents and conditions: i, Butok, THF; ii, MeI, THF
iodide $3(75 \%)$; no other α-methylation product was detected. The ${ }^{1} \mathrm{H}$ NMR spectra showed that the γ-methylation product 3 was a ca. 3:1 mixture of two isomers, in which the major isomer was isolated in pure crystalline form. The 2-methyl protons and the ester O-methylene protons of the major isomer appeared to higher field than those of the minor isomer, indicating that the major and minor isomers have the structures $Z-3$ and $E-3$, respectively. This is analogous to the observation of Howe for the conformers of the phosphonium bromide 2a. ${ }^{9}$ The 3-methyl protons of the major isomer resonated at 2.02 ppm as a double of triplet by long-range couplings with the phosphorus atom (J 4.0 Hz) and the 1 -methylene protons ($J 1.1 \mathrm{~Hz}$). Thus, alkylation of the allylidenephosphorane 1a was found to occur exclusively at the γ-position to the phosphorus atom.
Next, reaction of the phosphorane 1a with an α-halogenoketone was examined. When a mixture of the phosphonium bromide 2a and bromoacetone was stirred in dichloromethane in the presence of diisopropylethylamine, the desired cyclopentadiene 4 was obtained (66%). Some of the reaction conditions examined are listed in Table 1. Although the reaction

Table 1 Reaction of $2 a$ and halogenoacetone under various conditions

Entry	$\frac{\text { Halogenoacetone }}{\text { Hal }}$	Reaction conditions ${ }^{\text {a }}$		$\frac{\text { Yield }^{b} \text { of } 4}{(\%)}$
		Base	Solvent	
1	Br	$\mathrm{Pr}^{\mathbf{i}}{ }_{2} \mathrm{NEt}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	66
2	Br	$\mathrm{Pr}^{2}{ }_{2} \mathrm{NEt}$	DMF	42
3	Br	$\mathrm{K}_{2} \mathrm{CO}_{3}$	MeCN	25
4	Br	NaHCO_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	96
5	I	NaHCO_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	62
6	Cl	NaHCO_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	72

${ }^{a}$ All reactions were carried out at room temperature for $12 \mathrm{~h} .{ }^{\boldsymbol{b}}$ Isolated yield based on the phosphonium bromide 2a.

4
Scheme 2

Table 2 Preparation of cyclopentadienes ${ }^{a}$

Phosphonium	Cyclopentadiene	
Entry bromide	Halogenoketone	No.

$12 a$

4

96
5
 78 71
6

7

8
 2a

9

$6 \quad 2 b$

48
$7 \quad 2 b$

10

${ }^{a}$ All reactions were carried out at room temperature for 12 h in a heterogeneous medium of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and aqueous $\mathrm{NaHCO}_{3} .{ }^{b}$ Isolated yield based on the phosphonium bromide.
proceeds under anhydrous conditions using diisopropylethylamine and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base, the best results were obtained in a heterogeneous medium of dichloromethane and saturated aqueous NaHCO_{3}, at room temperature under nitrogen, in which the annulation might be promoted by a phase-transfer reaction. Of the halogeno-acetones used, bromoacetone gave the highest yield of 4 (entry 4). The low yield with iodoacetone seems to be due to the instability of the iodide under the reaction conditions.

As can be seen from Table 2, the annulation is applicable to the preparation of the variety of cyclopentadienes. Primary bromides reacted with 2a to give excellent yields of the corresponding cyclopentadienes (entries 1-4). A secondary bromide also underwent annulation with 2 a to give the tetrasubstituted cyclopentadiene $8(72 \%)$ (entry 5). It is noteworthy that no competitive elimination of the halide was observed because of the very mild conditions. The 2-phenyl phosphonium bromide $\mathbf{2 b}$ reacted with bromoacetone and bromoacetophenone to afford the 2-phenylcyclopentadienes 9 and 10, respectively, although in lower yield compared with 2a. This may be the result of the reduced reactivity of $\mathbf{2 b}$ for steric and electronic reasons. The phosphonium bromide 2 c having no substituent at the 2 -position failed to undergo annulation with bromoacetone. The easy dimerization of 2 c has been reported ${ }^{11}$ to form the dimer 11, which was, in fact, detected upon exposure of 2 c in the heterogeneous medium.

It has been reported that thioesters undergo an intramolecular Wittig reaction to produce cyclic thioenol ethers. ${ }^{12}$ When S-ethyl bromoethanethioate was allowed to react with 2a, the expected 4-ethylthiocyclopentadiene 12 was obtained (51%). The latter was converted by treatment with titanium tetrachloride ${ }^{13}$ into the cyclopentenone $13(75 \%)$.

13
Scheme 3 Reagents and conditions: i, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$; ii, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{AcOH}$, then $\mathrm{H}_{2} \mathrm{O}$

To explore further the scope of the annulation, we prepared the secondary phosphonium bromide $\mathbf{1 7}$ from acetoin tetrahydropyranyl ether 14 by a straightforward sequence (Scheme 4) consisting of a Wittig-Horner reaction with triethyl phosphonoacetate, deprotection, bromination and then treatment

18
Scheme 4 Reagents and conditions: i, (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}$, THF; ii, HClO_{4}, THF, $\mathrm{H}_{2} \mathrm{O}$; iii, $\mathrm{PBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{Bu}_{3} \mathrm{P}$, benzene; v, $\mathrm{Bu}^{\text {I OK, }} \mathrm{BrCH}_{2} \mathrm{COSEt}$, THF
with tributylphosphine.* Attempted reaction of the phosphonium bromide 17 with S-ethyl bromoethanethioate in dichloromethane and saturated aqueous NaHCO_{3} gave none of the expected cyclopentadiene 18. Instead isolation of S-ethyl ethylthioethanethioate from the reaction mixture shows attendant hydrolysis of the bromide in the aqueous medium. The desired compound 18 was obtained under anhydrous conditions. Thus, the phosphonium bromide 17 was treated with an equivalent of $\mathrm{Bu}^{t} \mathrm{OK}$ in THF and then S-ethyl bromoethanethioate. After disappearance of the yellow colour of the phosphorane the mixture was treated slowly with an additional equivalent of $\mathrm{Bu}^{t} \mathrm{OK}$ to give $18(23 \%)$. The resulting ethylthiocyclopentadiene 18 might be a precursor of methylenomycin. ${ }^{14}$

Although cyclopentadienes are known to undergo ready 1,5sigmatropic migration, ${ }^{15}$ those prepared above have the double bonds fixed at the 1- and 3-positions. Notable spectroscopic features are as follows: (1) UV absorption maxima appear in the region 285-302 nm for the 4-alkyl substituted cyclopentadienes 4 and 6-9, and 331-340 for 4-phenyl- and 4-ethylthio-cyclopentadienes 5, 10, 12 and 18 due to the conjugated dienoic acid ester.
(2) In the ${ }^{1} \mathrm{H}$ NMR spectra of the 2-methyl series 4-8, 12 and 18, the homoallylic coupling ($J 2.3-2.5$) between the 5-protons and the 2-methyl protons was observed and the allylic coupling ($J 0.7-1.0$) between the 5-protons and 3-proton was also observed in many cases. The homoallylic coupling disappeared in 2-phenylcyclopentadienes 9 and 10, in which the 5-methylene protons appeared as a doublet ($J 1.0$).
(3) The 5-methyl protons of 8 resonated at 1.22 ppm as a doublet ($J 7.4$). The cyclopentadienes are stable to 1,5 -sigmatropic migration and unchanged when left at room temperature for several weeks. Furthermore, there was no migration of the double bonds of compound 4 when it was heated in refluxing toluene.

A plausible mechanism for the annulation is outlined in Scheme 5; it appears to proceed stepwise. The first step is nucleophilic substitution of the halides by the C-3 carbanion of the 1,4 -dipole resonance form of 1 , leading to regioselective formation of the alkylated phosphonium salts 19. Regeneration of the phosphorane 20 from 19 takes place smoothly by way of a phase-transfer reaction, a subsequent intramolecular Wittig reaction furnishing the cyclpentadienes $4-10$. The intermediate

[^0]

phosphorane would be a mixture of the two conformers $E-20$ and $Z-20$ as found in the γ-methylated phosphonium salt 3. The formation of cyclopentadiene in high yield can be explained by ready interconversion of the conformers. \dagger

In conclusion, we have developed an efficient $[3+2]$ annulation for the regioselective synthesis of substituted cyclopentadienes in a single operation under very mild reaction conditions.

Experimental

All m.p.s were measured on a Gallenkamp micro melting point apparatus and are uncorrected. IR spectra were recorded on a Hitachi $260-10$ spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured at 90 MHz on a Hitachi $\mathrm{R}-90 \mathrm{H}$ spectrometer or at 360 MHz on a Bruker AM- 360 spectrometer, using SiMe_{4} as the internal standard. ${ }^{13} \mathrm{C}$ NMR were recorded at 90 MHz on a Bruker AM360 spectrometer or at 75 MHz on a Bruker MSL- 300 spectrometer. Solvent peak $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} 77.0\right)$ was used for the internal standard. Mass spectra were recorded on a Hitachi M-80B spectrometer.

Allyltriphenylphosphonium Bromides 2a-c.--(3-Ethoxycarb-onyl-2-methylprop-2-enyl)triphenylphosphonium bromide 2a and (3-ethoxycarbonylprop-2-enyl)triphenylphosphonium bromide $\mathbf{2 c}$ were prepared according to the literature method ${ }^{9}$ as a mixture of the E - and Z-geometrical isomers and used without separation of the isomers. (Z)-(3-Ethoxycarbonyl-2-phenylprop-2-enyl)triphenylphosphonium bromide $\mathbf{2 b}$ was prepared from ethyl (Z)-4-bromo-3-phenylbut-2-enoate ${ }^{16}$ (366 $\mathrm{mg}, 1.36 \mathrm{mmol}$) by treatment with triphenylphosphine (360 mg , 1.37 mmol) in dry benzene ($10 \mathrm{~cm}^{3}$) for 3 days at $40^{\circ} \mathrm{C}$ under N_{2}. The precipitates were filtered off and recrystallized from dichloromethane-benzene to give the phosphonium bromide ($530 \mathrm{mg}, 73 \%$) as colourless crystals, m.p. $190-192{ }^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 67.6 ; \mathrm{H}, 5.0 ; \mathrm{Br}, 14.9 . \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BrO}_{2} \mathrm{P}$ requires C , $67.80 ; \mathrm{H}, 5.31 ; \mathrm{Br}, 15.04 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1701,1630,1450$, $1197,1111,761$ and $698 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54-7.80(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.26(5 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{Ph}), 6.12\left(2 \mathrm{H}, \mathrm{d}, J 17.4, \mathrm{PCH}_{2}\right), 6.07(1 \mathrm{H}$,

d, $J 5.5,=\mathrm{CHP}), 3.90\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.13(3 \mathrm{H}, \mathrm{t}$, $J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}$).

(3-Ethoxycarbonyl-2,3-dimethylprop-2-enyl)triphenylphosphonium Iodide 3.-Potassium tert-butoxide $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THF; $1.0 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$) was added dropwise to a stirred suspension of $2 \mathbf{2 a}(470 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF at $0^{\circ} \mathrm{C}$ under N_{2} and the mixture was stirred for a further 30 min . To this cooled mixture was added iodomethane $\left(0.1 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}\right)$. The mixture was stirred for 2 days at room temperature. The precipitate was filtered off and dissolved in dichloromethane. Filtration and evaporation of the dichloromethane solution gave white crystals of the title compound ($360 \mathrm{mg}, 75 \%$). An analytical sample was obtained by recrystallization from MeCN -ethyl acetate, m.p. $100-105^{\circ} \mathrm{C}$ (decomp.) (Found: C, 59.3; $\mathrm{H}, 5.2 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{IO}_{2} \mathrm{P}$ requires $\mathrm{C}, 58.88 ; \mathrm{H}, 5.32 \%$); $\delta_{\mathrm{H}^{-}}$ ($90 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $7.56-8.02(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.24(2 \mathrm{H}, \mathrm{d}, J 17$, $\left.\mathrm{PCH}_{2}\right), 3.80\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.02(3 \mathrm{H}, \mathrm{dt}, J 4.0$ and $1.1,3-\mathrm{Me})$, 1.81 ($3 \mathrm{H}, \mathrm{d}, J 6.7,2-\mathrm{Me}$) and 1.07 ($3 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$).

Ethyl 2,4-Dimethylcyclopenta-1,3-diene-1-carboxylate 4: General Procedure.-Method A. Saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was layered on a solution of (3-ethoxycarbonyl-2-methylprop-2-enyl)triphenylphosphonium bromide $2 \mathrm{aa}(470 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dichloromethane ($10 \mathrm{~cm}^{3}$). To this well-stirred mixture was added a solution of bromoacetone ($150 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dichloromethane ($2 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 12 h under N_{2}. The aqueous layer was separated and extracted with dichloromethane. The combined organic layers were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was passed through a short column of SiO_{2} (eluent: hexane-ether, 1:1 v / v) and further purified by flash chromatography on SiO_{2} to give the title compound as an oil ($160 \mathrm{mg}, 96 \%$), b.p. $80^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$ (bath temp.) (Found: $\mathrm{M}^{+}, 166.10079$. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 166.0993$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1703,1630$, $1560,1190,1078,751$ and $693 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.05(1$ H , br s, $3-\mathrm{H}$), $4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.22(2 \mathrm{H}, \mathrm{dq}$, $J 0.8,2.5,5-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{t}, J 2.5,2-\mathrm{Me}), 2.07(3 \mathrm{H}, \mathrm{d}, J 1.6$, $4-\mathrm{Me})$ and $1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(90 \mathrm{MHz}$; CDCl_{3}) 164.96, 156.22, 150.86, 133.21, 126.71, 59.24, 45.96, 16.31, 15.41 and 14.54; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 285\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 13300$) and 229 (22 100); m/z $166\left(\mathrm{M}^{+}, 31 \%\right), 137$ (8), 121 (30) and 93 (95).
Method B. To a solution of 2a ($470 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was added $\operatorname{Pr}^{i}{ }_{2} \mathrm{NEt}\left(0.5 \mathrm{~cm}^{3}, 2.3 \mathrm{mmol}\right)$ and then bromoacetone ($150 \mathrm{mg}, 1.1 \mathrm{mmol}$) under N_{2}. The mixture was stirred for 12 h and concentrated under reduced pressure. The residue was purified by chromatography in a similar manner to that described above to give the title compound ($109 \mathrm{mg}, 66 \%$).

Ethyl 2-Methyl-4-phenylcyclopenta-1,3-diene-1-carboxylate

 5.-In the same manner as described for the preparation (method A) of 4 , the phosphonium bromide $\mathbf{2 a}(470 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with 2-bromoacetophenone $(220 \mathrm{mg}, 1.1 \mathrm{mmol})$ to give the title compound as needles ($180 \mathrm{mg}, 78 \%$); m.p. $37-38{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate) (Found: C, 78.9; H, 6.8. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $78.92 ; \mathrm{H}, 7.06 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1705,1380$, $1220,1186,1075$ and $750 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.28-7.57(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 6.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.25\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.70(2 \mathrm{H}, \mathrm{dq}, J 0.8,2.4,5-\mathrm{H}), 2.35$, ($3 \mathrm{H}, \mathrm{t}, J 2.4,2-\mathrm{Me}$) and 1.35 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 165.08, 155.75 , $150.53,134.88,131.87,128.72,128.04,127.95,125.60,59.55$, $42.08,15.57$ and $14.52 ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 331\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ $14100)$ and 225 (10400); $m / z 228\left(\mathrm{M}^{+}, 71 \%\right), 199$ (7) and 155 (100).Ethyl 2-Methyl-4-pentylcyclopenta-1,3-diene-1-carboxylate 6.-In the same manner as described for the preparation (method A) of 4, the phosphonium bromide 2a ($470 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ was treated with 1 -bromoheptan-2-one ($210 \mathrm{mg}, 1.1$ $\mathrm{mmol})$ to give the title compound as an oil ($160 \mathrm{mg}, 71 \%$) (Found: $\mathrm{M}^{+}, 222.1591 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 222.1619$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1700,1622,1558,1077,893$ and $750 ; \delta_{\mathrm{H}}(360$ $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.061 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}\right), 4.20(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.22(2 \mathrm{H}, \mathrm{dq}, J 0.7,2.5,5-\mathrm{H}), 2.38(2 \mathrm{H}, \mathrm{dt}, J 1.2$, $\left.7.5,4-\mathrm{CH}_{2}\right), 2.31(3 \mathrm{H}, \mathrm{t}, J 2.5,2-\mathrm{Me}), 1.54(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30(4$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $0.89\left[3 \mathrm{H}, \mathrm{t}, J 7.1,\left(\mathrm{CH}_{2}\right)_{4}-\right.$ $\left.\mathrm{CH}_{3}\right] ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.17$, 156.10, 156.05, 132.07 , 126.51, 59.28, 44.34, 31.65, 30.92, 29.01, 22.53, 15.52, 14.54 and 14.02; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 291\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 11500\right) ; m / z 222$ $\left(\mathrm{M}^{+}, 36 \%\right)$ and 149 (15).

Ethyl 4-Ethoxycarbonyl-3-methylcyclopenta-1,3-dienylacetate 7.-In the same manner as described for the preparation $(\operatorname{method} A)$ of 4, the phosphonium bromide $\mathbf{2 a}(470 \mathrm{mg}, 1.0$ mmol) was treated with ethyl 4 -bromo-3-oxobutanoate (230 $\mathrm{mg}, 1.1 \mathrm{mmol}$) to give the title compound as an oil (100 mg , 50%) Found: C, 66.1; H, 7.0. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 66.09 ; H , 6.83%); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1738,1700,1627,1559,1072,900$ and $750 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.26(1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}), 4.21(2 \mathrm{H}, \mathrm{q}, J$ $\left.7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.17\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.42(2 \mathrm{H}, \mathrm{d}, J$ $\left.1.4,4-\mathrm{CH}_{2}\right), 3.37(2 \mathrm{H}, \mathrm{dq}, J 1.0,2.4,5-\mathrm{H}), 2.32(3 \mathrm{H}, \mathrm{t}, J 2.4,2-$ $\mathrm{Me}), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.27(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 285\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 10700\right)$; $m / z 238\left(\mathrm{M}^{+}, 65 \%\right), 193$ (29) and 165 (47).

Ethyl4-Ethyl-2,5-dimethylcyclopenta-1,3-diene-1-carboxylate 8.-In the same manner as described for the preparation $(\operatorname{method} A)$ of 4, the phosphonium bromide $2 \mathrm{a}(470 \mathrm{mg}, 1.0$ mmol) was treated with 2-bromopentan-3-one ($180 \mathrm{mg}, 1.1$ $\mathrm{mmol})$ to give the title compound as an oil ($140 \mathrm{mg}, 72 \%$) (Found: C, 73.9; H, 9.1. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$ requires C, 74.19; H, 9.34\%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1695,1619,1552,1074,848$ and $774 ; \delta_{\mathrm{H}}(360$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H})$, 4.14-4.31 $(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.20(1 \mathrm{H}, \mathrm{qq}, J 7.5,2.3,5-\mathrm{H}), 2.22-2.42(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30(3 \mathrm{H}, 3, J 2.3,2-\mathrm{Me}), 1.32(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.22(3 \mathrm{H}, \mathrm{d}, J 7.5,5-\mathrm{Me})$ and $1.14(3 \mathrm{H}, \mathrm{t}, J 7.4$, $4-\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $165.03,163.50,154.76,132.63$, 128.89, 59.18, 49.39, 22.09, 15.70, 14.77, 14.56 and 12.93; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 293\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 9800\right) ; m / z 194\left(\mathrm{M}^{+}\right.$, 91%), 149 (29) and 121 (100).

Ethyl 4-Methyl-2-phenylcyclopenta-1,3-diene-1-carboxylate 9.-In the same manner as described for the preparation (method A) of 4, the phosphonium bromide 2b $(540 \mathrm{mg}, 1.0$ mmol) was treated with bromoacetone ($150 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the title compound as an oil ($114 \mathrm{mg}, 50 \%$) (Found: M^{+}, 228.1173. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M, 228.1149$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1710,1672,1558,1220,1168,898,750$ and $701 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.27-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.28(1 \mathrm{H}, \mathrm{brs} 3-\mathrm{H}),, 4.11(2 \mathrm{H}, \mathrm{q}$, $J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.45 ($2 \mathrm{H}, \mathrm{d}, J 1.0,5-\mathrm{H}$), 2.13 ($3 \mathrm{H}, \mathrm{d}, J 1.5$, 4-Me) and $1.17\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 302$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 7400\right)$ and $232(12400) ; m / z 228\left(\mathrm{M}^{+}, 100 \%\right)$, 183 (33) and 155 (88).

Ethyl 2,4-Diphenylcyclopenta-1,3-diene-1-carboxylate 10.-In the same manner as described for the preparation $(\operatorname{method} A)$ of 4, the phosphonium bromide $\mathbf{2 b}(540 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated with 2-bromoacetophenone ($220 \mathrm{mg}, 1.1 \mathrm{mmol}$) to give the title compound as needles ($67 \mathrm{mg}, 23 \%$), m.p. $88.5-89.2^{\circ} \mathrm{C}$ (hexaneethyl acetate) Found: C, 82.4; H, 6.1. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $82.73 ; \mathrm{H}, 6.25 \%$); $v_{\max }$ (Nujol)/ cm^{-1} 1699, 1202, 1085, 778 and $741 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.21-7.80(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.97(1 \mathrm{H}, \mathrm{t}, J$
$0.9,3-\mathrm{H}), 4.17\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95(2 \mathrm{H}, \mathrm{d}, J 0.9,5-\mathrm{H})$ and $1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 340\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 15200$) and 262 (16600); m/z $290\left(\mathrm{M}^{+}, 100 \%\right), 245$ (17) and 217 (97).

Ethyl 4-Ethylthio-2-methylcyclopenta-1,3-diene-1-carboxylate 12.-In the same manner as described for the preparation $(\operatorname{method} A)$ of 4 , the phosphonium bromide $2 \mathrm{a}(470 \mathrm{mg}, 1.0$ mmol) was treated with S-ethyl bromoethanethioate (200 mg , 1.1 mmol) to give the title compound as an oil ($110 \mathrm{mg}, 51 \%$) (Found: $\mathrm{M}^{+}, 212.0855 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 212.0870$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1698,1607,1497,1240,1072,892$ and 750 ; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.05(1 \mathrm{H}$, br s, $3-\mathrm{H}), 4.20(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.43(2 \mathrm{H}, \mathrm{t}, J 2.4,5-\mathrm{H}), 2.90(2 \mathrm{H}, \mathrm{q}, J 7.4$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.31(3 \mathrm{H}, \mathrm{t}, J 2.4,2-\mathrm{Me}), 1.36(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 164.48, 155.93, 149.64, 129.24, 125.54, 59.34, 44.92, $26.62,15.44,14.52$ and $13.90 ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 335\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 9300\right) ; m / z 212\left(\mathrm{M}^{+}, 79 \%\right), 183$ (14), 167 (29) and 139 (75).

Ethyl 2-Methyl-4-oxocyclopent-2-ene-1-carboxylate 13.-Titanium tetrachloride ($0.1 \mathrm{~cm}^{3}, 0.9 \mathrm{mmol}$) was added to a stirred solution of $12(88 \mathrm{mg}, 0.42 \mathrm{mmol})$ in a mixture of dry dichloromethane ($7 \mathrm{~cm}^{3}$) and acetic acid $\left(7 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was further stirred for 30 min at $0^{\circ} \mathrm{C}$. To this mixture water ($0.04 \mathrm{~cm}^{3}, 2.2 \mathrm{mmol}$) was added and the mixture was stirred for 12 h at room temperature. The reaction mixture was poured into ice-water. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were washed successively with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by flash chromatography (eluent: hexane-ether, $3: 1 \mathrm{v} / \mathrm{v}$) to give the title compound as an oil ($50 \mathrm{mg}, 73 \%$), which showed spectral data identical with those reported. ${ }^{17}$

Ethyl (E)-4-Hydroxy-3-methylpent-2-enoate 15.-Sodium hydride (60% dispersion in mineral oil; $3.0 \mathrm{~g}, 75 \mathrm{mmol}$) was added portionwise to a solution of triethyl phosphonoacetate ($13.3 \mathrm{~g}, 59.4 \mathrm{mmol}$) in dry THF ($30 \mathrm{~cm}^{3}$) and the mixture was further stirred for 30 min . To this mixture was added a solution of $14^{18}(9.7 \mathrm{~g}, 57 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 24 h at room temperature and then poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(30 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by chromatography on SiO_{2} to give ethyl $(E)-4-[($ tetrahydro- 2 H -pyran-2-yl)oxy]-3-methylpent-2-enoate as an oil ($10.2 \mathrm{~g}, 74 \%$).

The whole product was dissolved in THF $\left(100 \mathrm{~cm}^{3}\right)$ and treated with a mixture of perchloric acid ($c a .70 \% ; 4 \mathrm{~cm}^{3}$) and water $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 6 h at room temperature. The THF was evaporated under reduced pressure and the remaining residue was extracted with ethyl acetate. The extract was washed with brine, dried $\left(\mathbf{M g S O}_{4}\right)$, and evaporated under reduced pressure. The residue was distilled under reduced pressure to give the title compound as a colourless oil $(6.0 \mathrm{~g}$, 67%), b.p. $95-105^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}$ (lit., ${ }^{19}$ b.p. $72-75^{\circ} \mathrm{C} / 0.1$ mmHg).

Ethyl 4-Bromo-3-methylpent-2-enoate 16.-Phosphorus tribromide ($3.2 \mathrm{~g}, 11.8 \mathrm{mmol}$) was added to a solution of $15(4.77 \mathrm{~g}$, $30 \mathrm{mmol})$ in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was further stirred for 20 h at room temperature before being poured into saturated aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure.

The residue was distilled under reduced pressure to give the title compound ($3.1 \mathrm{~g}, 47 \%$), b.p. $75^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$ (Found: M^{+}, $220.0081 . \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrO}_{2}$ requires $M, 220.0099$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1715,1642,1221$ and $1158 ; \delta_{\mathbf{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.91(1 \mathrm{H}, \mathrm{q}, J$ $1.0,2-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{q}, J 7.0,4-\mathrm{H}), 4.17\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.27(3 \mathrm{H}, \mathrm{d}, J 1.3,3-\mathrm{Me}), 1.80(3 \mathrm{H}, \mathrm{d}, J 7.0,5-\mathrm{H})$ and $1.28(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}$).
(1-Ethoxycarbonyl-2-methylbut-1-en-3-yl)tributylphosphonium Bromide 17.-Tributylphosphine ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a solution of $16(2.0 \mathrm{~g}, 9.0 \mathrm{mmol})$ in dry benzene (30 cm^{3}) under N_{2} and the mixture was refluxed for 10 h . The solvent was evaporated under reduced pressure and the residue was purified by chromatography on SiO_{2} (eluent: ethyl acetate$\mathrm{MeOH}, 10: 1 \mathrm{v} / \mathrm{v})$ to give the title compound as an oil $(3.78 \mathrm{~g}$, 96%); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1710,1641,1471,1227$ and $1164 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.16(1 \mathrm{H}, \mathrm{m}), 4.48(1 \mathrm{H}, \mathrm{dq}, J 17.1,7.4,1-\mathrm{H})$, $4.18\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2} 3 \mathrm{H}_{3}\right), 2.62-2.40\left(6 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right), 2.29$ ($3 \mathrm{H}, \quad \mathrm{d}, \quad J \quad 2.9, \quad 2-\mathrm{Me}$), $1.70-1.48 \quad(15 \mathrm{H}, \quad \mathrm{m}, \quad 1-\mathrm{Me}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $0.98([9 \mathrm{H}$, $\left.\mathrm{t}, J 6.9, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right] ; m / z(\mathrm{FAB}) 343\left(\mathrm{M}^{+}-\mathrm{Br}\right)$.

Ethyl 4-Ethylthio-2,3-dimethylcyclopenta-1,3-diene-1-carboxylate 18.-Potassium tert-butoxide ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; 1.0 $\mathrm{cm}^{3}, 1 \mathrm{mmol}$) was added slowly to a stirred suspension of 17 $(430 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under N_{2} and allowed to warm to room temperature over 1 h . To this yellow suspension was added S-ethyl bromoethanethioate $(210 \mathrm{mg}$, 1.1 mmol) and the mixture was stirred for 2 h until the yellow colour disappeared. To the suspension was added slowly $\mathrm{Bu}^{t} \mathrm{OK}$ ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $1.0 \mathrm{ml}, 1 \mathrm{mmol}$) over 2 h and the mixture was further stirred for 1 d . The mixture was poured into water and extracted with ether. The extract was washed with brine, dried (MgSO_{4}), and evaporated under reduced pressure. The residue was purified by flash chromatography on SiO_{2} (eluent: hexane-ether) to give the title compound as an oil (52 $\mathrm{mg}, 23 \%$) (Found: $\mathrm{M}^{+}, 226.0990 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires M, 226.1027); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1699,1537,1380,1230$ and 1062 ; $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.22\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.36(2 \mathrm{H}$, br s, $5-\mathrm{H}), 2.90\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.29(3 \mathrm{H}, \mathrm{t}, J 2.4$, 2-Me), $1.90(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{Me}), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$ and $1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 339\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 7200$).

Acknowledgements

We are grateful to the Material Analytical Center of ISIR, Osaka University, for NMR spectra and microanalyses, to Dr. K. Iio and Mrs. K. Fujiwara, National Institute of Materials and Chemical Research, for HRMS spectra.

References

1 For excellent reviews, see: M. Ramaiah, Synthesis, 1984, 529; L. A. Paquette, Top. Curr. Chem., 1984, 119, 1; R. D. Little, in Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 5, pp. 239-270; D. P. Curran, Synthesis, 1988, 417, 489.
2 P. L. Fuchs, J. Am. Chem. Soc., 1974, 96, 1607; J. P. Marino and M. P. Ferro, J. Org. Chem., 1981, 46, 1828.
3 H. J. Bestmann, G. Schade and G. Schmid, Angew. Chem., Int. Ed. Engl., 1980, 19, 822.
4 H.-J. Altenbach, Angew. Chem., Int. Ed. Engl., 1979, 18, 940; E. Piers and B. Abeysekera, Can. J. Chem., 1982, 60, 1114.
5 H. J. Bestmann, Angew. Chem., Int. Ed. Engl., 1965, 4, 583, 645, 830; E. J. Corey and B. W. Erickson, J. Org. Chem., 1974, 39, 821; H. J. Bestmann and K. Roth, Angew. Chem., Int. Ed. Engl., 1981, 20, 575; J. Ipaktschi and A. Saadatmandi, Liebigs Ann. Chem., 1984, 1989.

6 G. Büchi and H. Wüest, Helv. Chim. Acta., 1971, 54, 1767; F. Bohlmann and C. Zdero, Chem. Ber., 1973, 106, 3779; W. G. Dauben
and J. Ipaktschi, J. Am. Chem. Soc., 1973, 95, 5088; W. G. Dauben, D. J. Hart, J. Ipaktschi and A. P. Kozikowski, Tetrahedron Lett., 1973, 4425; A. Padwa and L. Brodsky, J. Org. Chem., 1974, 39, 1318; E. Vedejs and J. P. Bershas, Tetrahedron Lett., 1975, 1359; S. F. Martin and S. R. Desai, J. Org. Chem., 1977, 42, 1664; M. Hatanaka, Y. Yamamoto and T. Ishimaru, J. Chem. Soc., Chem. Commun., 1984, 1705.

7 M. Hatanaka, Y. Yamamoto, T. Ishimaru and T. Takai, Chem. Lett., 1985, 183.
8 Preliminary report: M. Hatanaka, Y. Himeda and I. Ueda, J. Chem. Soc., Chem. Commun., 1990, 526.
9 R. K. Howe, J. Am. Chem. Soc., 1971, 93, 3457.
10 For example of alkylation at the γ-position of allylidenephosphorane, see: B. Bogdanovic and S. Konstantinovic, Synthesis, 1972, 481.
11 M. W. Bredenkamp, J. S. Lesch, J. S. Malherbe, E. M. Molnar and D. F. Schneider, Tetrahedron Lett., 1980, 21, 4199.

12 R. W. Ratcliffe and G. Albers-Shőnberg, in Chemistry and Biology of β-Lactam Antibiotics, eds. R. B. Morin and M. Gorman, Academic Press, New York, 1982, vol. 2, p. 227.

13 T. Mukaiyama, S. Kamio, S. Kobayashi and H. Takei, Bull. Chem. Soc. Jpn., 1972, 45, 3723.
14 T. Haneishi, N. Kitahara, Y. Takiguchi, M. Arai and S. Sugawara, J. Antibiot., Ser. A, 1974, 27, 386; J. Jernow, W. Tautz, P. Rosen and J. F. Blount, J. Org. Chem., 1979, 44, 4210.
15 S. McLean and P. Hynes, Tetrahedron, 1965, 21, 2313, 2343.
16 J. Cheifari, S. Galanopoulos, W. K. Janowski, D. I. B. Kerr and R. H. Prager, Aust. J. Chem., 1987, 40, 1511.
17 L. J. Dolby, C. A. Elliger, S. Esfandiari and K. S. Marshall, J. Org. Chem., 1968, 33, 4508.
18 H. Hagiwara and H. Uda, J. Chem. Soc., Perkin Trans. 1, 1985, 283.

19 M. Larcheveque, P. Perriot and Y. Petit, Synthesis, 1983, 297.

Paper 3/02945J
Received 24th May 1993
Accepted 22nd June 1993

[^0]: * Triphenylphosphine gave poor yield of the corresponding phosphonium bromide.
 \dagger Howe has reported that the allylidenetriphenylphosphorane 1a and 1c exist mainly as two conformers depicted in Scheme 5 in rapid equilibrium. ${ }^{9}$

